Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 91(2): 1571-1577, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30543099

RESUMO

A laser-induced-breakdown-spectroscopy (LIBS) experiment with a unique double-pulse setup and operated in low-pressure (3 kPa) He ambient gas is performed to study the detection of light elements, such as hydrogen (H) and deuterium (D), as well as elements of high excitation energies, such as fluorine (F) and chlorine (Cl), which are usually difficult to detect using ordinary LIBS techniques. A nanosecond Nd:YAG laser operated in its fundamental wavelength with energy of 54 mJ is focused onto the Al target to generate the He plasma. Another picosecond Nd:YAG laser operated in its fundamental wavelength with energy of 2 mJ is focused onto the sample surface and activated 2 µs before the operation of the nanosecond laser. The application to polyvinyl chloride (PVC) and polytetrafluoroethylene (PTFE) samples produces sharp and high-intensity Cl- and F-emission lines. Meanwhile, the sharp and well-resolved H-D-emission lines with merely 0.18 nm wavelength separation are also clearly detected from a zircaloy sample. Further measurement of a set of zircaloy samples containing different concentrations of D yields a linear calibration curve with a zero intercept. The detection limit of D is found to be about 10 ppm.

2.
J Phys Condens Matter ; 25(50): 505901, 2013 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-24220020

RESUMO

The hybrid material copper (II) tetrachloro-bis(phenyl ethyl ammonium) (C6H5CH2CH2NH3)2CuCl4, or PEACuCl, has been investigated by temperature-dependent spectroscopic absorption experiments. The absorption bands observed in the near-infrared region (1.3-1.9 eV) generally exhibit redshifts with increasing temperature. The temperature-induced energy shifts of the spectral components are shown to be consistently related to temperature-induced Cu-Cl bond length changes. Additionally, the thermochromic color change is caused by a charge transfer band edge redshifting (in the visible region 2.0-2.8 eV) with increasing temperature. By comparison with similar Cu-based systems, it is suggested that this shift is caused by broadening and strengthening of the band.


Assuntos
Cloretos/química , Complexos de Coordenação/química , Cobre/química , Elétrons , Transição de Fase , Espectroscopia de Luz Próxima ao Infravermelho , Temperatura , Termogravimetria , Difração de Raios X
3.
J Phys Condens Matter ; 25(11): 116007, 2013 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-23422011

RESUMO

Time resolved optical spectroscopy is used to elucidate the dynamics of photodoped spin-aligned carriers in the presence of an underlying magnetic lattice in the multiferroic compound TbMnO(3). The transient responses while probing d-d intersite transitions show marked differences along different crystallographic directions, which are discussed in terms of the interplay between the processes of hopping of the photo-injected electrons and the magnetic order in the material.

4.
Anal Chem ; 84(5): 2224-31, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22283593

RESUMO

A crucial safety measure to be strictly observed in the operation of heavy-water nuclear power plants is the mandatory regular inspection of the concentration of deuterium penetrated into the zircaloy fuel vessels. The existing standard method requires a tedious, destructive, and costly sample preparation process involving the removal of the remaining fuel in the vessel and melting away part of the zircaloy pipe. An alternative method of orthogonal dual-pulse laser-induced breakdown spectrometry (LIBS) is proposed by employing flowing atmospheric helium gas without the use of a sample chamber. The special setup of ps and ns laser systems, operated for the separate ablation of the sample target and the generation of helium gas plasma, respectively, with properly controlled relative timing, has succeeded in producing the desired sharp D I 656.10 nm emission line with effective suppression of the interfering H I 656.28 nm emission by operating the ps ablation laser at very low output energy of 26 mJ and 1 µs ahead of the helium plasma generation. Under this optimal experimental condition, a linear calibration line is attained with practically zero intercept and a 20 µg/g detection limit for D analysis of zircaloy sample while creating a crater only 10 µm in diameter. Therefore, this method promises its potential application for the practical, in situ, and virtually nondestructive quantitative microarea analysis of D, thereby supporting the more-efficient operation and maintenance of heavy-water nuclear power plants. Furthermore, it will also meet the anticipated needs of future nuclear fusion power plants, as well as other important fields of application in the foreseeable future.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(6 Pt 2): 066606, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16906996

RESUMO

We have examined the rational solitons in the Generalized Coupled Mode model for a deep nonlinear Bragg grating. These solitons are the degenerate forms of the ordinary solitons and appear at the transition lines in the parameter plane. A simple formulation is presented for the investigation of the bifurcations induced by detuning the carrier wave frequency. The analysis yields among others the appearance of in-gap dark and antidark rational solitons unknown in the nonlinear shallow grating. The exact expressions for the corresponding rational solitons are also derived in the process, which are characterized by rational algebraic functions. It is further demonstrated that certain effects in the soliton energy variations are to be expected when the frequency is varied across the values where the rational solitons appear.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...